JIMI 发表于 16:21

正负折射率材料组成的一维光子晶体的能带及电场

论文编号:WLX111  字数:11457,页数:30摘    要 光子晶体是一种具有周期性介电常数的人工材料,其主要特征是具有光子禁带。根据空间维度不同,可分为一维、二维和三维光子晶体。由于其独特的性质,光子晶体可以用来制作全新原理或以前所不能制作的高性能器件。 负折射率材料是最近几年才提出的一种全新的人工合成材料,由于其独特的电磁性质和广阔的应用前景而倍受关注。把负折射率材料引入到光子晶体中,必然会使得光子晶体具有许多新的传输特性。因此,含负折射率材料的一维光子晶体已成为当前的一个研究热点。 本文的主要工作如下: 1.分别阐述了负折射率材料和光子晶体的基本概念、特性及应用。 2.从麦克斯韦方程出发,分析了光子带隙产生的物理机理。 3.从光的电磁理论出发,分析电磁波在介质中的传播特性,并推导出一维光子晶体传输矩阵。 4.从光子晶体的结构出发,利用传输矩阵方法进行数值模拟,研究传统一维光子晶体和含负折射率材料的一维光子晶体带隙的影响因素。 5.研究了负折射率层为色散材料的一维光子晶体的能带。关键词: 光子晶体  负折射率  传输矩阵  能带  Abstract Photonic crystals are artificial materials with periodic permittivity. The major characteristic of photonic crystals is photonic band-gap. According to the difference of dimension in space, there are one, two and three dimension photonic crystals. Due to its particular characteristics, photonic crystal can be used to make devices with high performance, which are based on totally new theories or instruments can't be manufactured before. Left-handed material (LHM) is a new kind of artificial material with both negative dielectric permittivity and negative magnetic permeability. Recently, LHM has attracted much attention for its unusual electromagnetic wave properties and extensive applications. If we consider photonic crystals containing LHM, we will get many new transmission properties. Presently, one-dimension photonic crystals containing LHM have become the focus in research. The main works in this paper are shown as follows: 1. The conception, properties and applications of LHM and photonic crystals are reviewed. 2. From the Maxwell equation, we analyzed the physical mechanism of photonic band-gap formation. 3. From the electromagnetic theory of light, we analyzed the propagation characteristic of electromagnetic wave in the medium and derived the theory of one-dimensional optical transfer matrix. 4. Based on the structure of photonic crystals, we do some research about structure parameter effects on band-gap of one-dimension photonic crystals and one-dimension photonic crystals containing LHM by transfer matrix method. 5. We studied the energy bands of one-dimension photonic crystals in which we substitute the left-handed materials with dispersion materials.Keywords:  photonic crystals;negative refraction index;transfer matrix;energy band目  录中文摘要 i英文摘要 ii目录 iii第一章     绪论  1 1.1  负折射率材料概述 1 1.1.1  负折射率材料的提出 1 1.1.2  负折射率材料的制备与应用前景 1 1.2  光子晶体概述 2       1.2.1  光子晶体的概念及其特性 2       1.2.2  光子晶体的应用 3 1.3  本论文的主要工作 3第二章     光子带隙形成的物理机制分析  4 2.1   晶体中电子的运动 4 2.2   光子晶体中光子的运动 4 2.3   光子带隙的形成 5第三章     电磁波在一维光子晶体中的TE、TM极化 7 3.1   光的电磁理论 7 3.1.1  电磁波在介质中的传播 7 3.1.2  电磁波在周期性介质中的传播 8 3.2  一维光子晶体的理论研究 10      3.2.1  传输矩阵法的理论模型 10      3.2.2  传输矩阵的推导 11 3.3  一维光子晶体的带隙 14第四章     正负折射率材料组成的一维光子晶体的能带 17      4.1  传统一维光子晶体材料各参数对光子带隙的影响 17           4.1.1  周期数对光子带隙的影响 17           4.1.2  周期光程对光子带隙的影响 18           4.1.3  折射率比值对光子带隙的影响 18      4.2  正负折射率材料组成的一维光子晶体 19           4.2.1  周期数对光子带隙的影响 20           4.2.2  周期光程对光子带隙的影响 21           4.2.3  折射率比值对光子带隙的影响 22第五章     负折射率层为色散介质的一维光子晶体能带 23      5.1  色散负折射率材料 23      5.2  一维光子晶体传输特性 23第六章     总结与展望 24致谢 25参考文献 26
页: [1]
查看完整版本: 正负折射率材料组成的一维光子晶体的能带及电场